QUALOGY

& PBarel@Qualogy.com
http://blog.bar-solutions.com

)

QUALOGY



L L

'97 '98 '99 '00 'O1 '02 'O3 '04 'O5 '0o6 'O7 'O8 '09 '10 '11 '12 "13 '14 '15 '16 '17 '18 '19 '20 '21

ORACLE ORACLE
S5 ACE 8 A ACE Director

ORACLE’ ORACLE’
e oeorer e | v'moseeaking ar | 5’“ -
W ODTUG #=» b
R BRE recric — 1 i [N
ORI Rl etuiis et g Israel Oracle User Group
%IETUIGZ:J@ TNWR2 1IN wenwn 120K
e
m speaking at. UK'OUG T
bar-solutions.com . =l U TRELAD 7 gy 522
http://blog.bar-solutions.com FRANACEECEIERelAY il e

All things - | simple-talk/author/

- — patrick-barel
-P%ALLE——:.LLp.//allthingsoracle.com patrick-barel/

W.//www.otechmag.com bar-solutions.com/
otechmagazine.php

Plugins for PL/SQL Developer
http://plugins.bar-solutions.com

QUALOGY




Contact me...

Y i 'fv -1 PBarel@Qualogy.com
i Patrick.Barel@GMail.com
@patch72 .
‘patrick@bar—solutions.com
"R S
99

Patrick.Barel@GMail.com

3029156
#40338721

_ﬂr’-ﬂ
., Patrick Barel

QUALOGY



Oracle ACE
Program

Oracle ACE Program

3 membership tiers
¢ Oracle ACE
Oracle ACE Oracle ACE Oracle ACE
Director Pro Associate Nominate
M someone you know:
ace.oracle.com/nominate

For more details on Oracle ACE Program:
ace.oracle.com

Connect: aceprogram_ww@oracle.com [ Facebook.com/OracleACEs Ed @oracleace E



Oracle Cloud Infrastructure

o A

New Free Tier Always Free =

_————
Services you can use for unlimited time pe

oracle.com/cloud/free +
30-Day Free Trial

Free credits you can use for more services




Get to know your code by
InNstrumentation

October 5, 2022

Patrick Barel, Qualogy

)

QUALOGY



Get to know your program by instrumentation October 5, 2022 QUALOGY



ﬁW!f%.%g .'_ T
W L S

%'Wf '

m@ mjr'@

7/
%’*’ff%é
AL A '-'.""‘:*-.‘! i ,

8 Get to know your program by instrumentation — —



How? DB Logging!

e Not available by default
o DBMS_OUTPUT is NOT logging

Get to know your program by instrumentation October 5, 2022 QUALOGY




My program

create or replace procedure my program DEMO@demo> exec my program
is
begin PL/SQL procedure successfully completed.
dbms_output.put_line
(q' [Start of my program]'); DEMO@demo> set serveroutput on size unlimited
dbms_output.put_line DEMO@demo> exec my program
(q' [Start doing important stuff]'); Start of my program
-- do all the important stuff here Start doing important stuff
-- write more logging if necessary End doing important stuff
dbms_ output.put line Start doing even more important stuff
(q' [End doing important stuff]'); End doing even more important stuff
dbms_output.put_line End of my program
(q' [Start doing even more important stuff]');
-- do even more important stuff here PL/SQL procedure successfully completed.
-- and write even more logging if necessary DEMO@demo>
dbms_ output.put_line
(q' [End doing even more important stuff]');
dbms_output.put_ line
(q' [End of my program]');
end;

/

Get to know your program by instrumentation October 5, 2022 QUALOGY




How? DB Logging!

e Not available by default
o DBMS_OUTPUT is NOT logging
e Build your own

11 Get to know your program by instrumentation October 5, 2022 QUALOGY




My program

create or replace procedure my program

is

begin

insert into t_log(info)

values (q'[Start of my program]');
insert into t_log(info)

values (q'[Start doing important stuff]');
-- do all the important stuff here

-- write more logging if necessary

insert into t_log(info)

values (q'[End doing important stuff]');

insert into t_log(info)

values (q'[Start doing even more important stuff]');
-- do even more important stuff here

-- and write even more logging if necessary

insert into t_log(info)

values (q'[End doing even more important stuff]');
insert into t_log(info)

values (q'[End of my program]');

end;

/

Get to know your program by instrumentation

DEMO@demo> create table t log

( id number generated always as identity

, info varchar2 (4000)

, time stamp timestamp default systimestamp

)
/
Table created

DEMO@demo>exec my program
PL/SQL procedure successfully completed
DEMO@demo>

October 5, 2022 QUALOGY




My program

create or replace procedure my program DEMO@demo> set linesize 45
is DEMO@demo> column id format 999
begin DEMO@demo> column info format a40
insert into t_log(info) DEMO@demo> column time stamp format a30
values (q'[Start of my program]'); DEMO@demo> select *
insert into t_log(info) from t log
values (q'[Start doing important stuff]'); /
-- do all the important stuff here
-- write more logging if necessary
insert into t_log(info)
values (q'[End doing important stuff]');
insert into t_log(info)
values (q'[Start doing even more important stuff]');
-- do even more important stuff here
-- and write even more logging if necessary
insert into t_log(info)
values (q'[End doing even more important stuff]');
insert into t_log(info)
values (q'[End of my program]');
end;

/

Get to know your program by instrumentation October 5, 2022 QUALOGY




My program

ID INFO
create or replace procedure my program
is
begin
insert into t_log(info) 1 Start of my program
values (q'[Start of my program]') ; 25-FEB-18 05.38.51.242213 AM
insert into t_log(info) 2 Start doing important stuff
values (q'[Start doing important stuff]'); 25-FEB-18 05.38.51.255335 AM
-- do all the important stuff here 3 End doing important stuff
-- write more logging if necessary 25-FEB-18 05.38.51.259890 AM
insert into t_log(info) 4 Start doing even more important stuff
values (q'[End doing important stuff]'); 25-FEB-18 05.38.51.264286 AM
insert into t_log(info) 5 End doing even more important stuff
values (q'[Start doing even more important stuff]'); 25-FEB-18 05.38.51.269570 AM
-- do even more important stuff here 6 End of my program
-- and write even more logging if necessary 25-FEB-18 05.38.51.274809 AM
insert into t_log(info)
values (q'[End doing even more important stuff]'); 6 rows selected.
insert into t log(info) DEMO@demo> rollback
values (q'[End of my program]'); /
end;

/ DEMO(@demo> select *

from t log
/

Get to know your program by instrumentation October 5, 2022 QUALOGY




My program

no rows selected.

create or replace procedure my program
is
begin

insert into t_log(info)

values (q'[Start of my program]');

insert into t_log(info)

values (q'[Start doing important stuff]');

-- do all the important stuff here

-- write more logging if necessary

insert into t_log(info)

values (q'[End doing important stuff]');

insert into t_log(info)

values (q'[Start doing even more important stuff]');

-- do even more important stuff here

-- and write even more logging if necessary

insert into t_log(info)

values (q'[End doing even more important stuff]');

insert into t_log(info)

values (q'[End of my program]');
end;

/

DEMO@demo>

Get to know your program by instrumentation October 5, 2022 QUALOGY




My program

create or replace procedure my program DEMO@demo> create or replace procedure
is logthis (logtext in in varchar2)
begin is
ingéhisigtéStatbgdfnfig) program] ') ;
lugthés (qg[$8&attdofngyippogtamt 'stuff] ') ; begin
insdotalhtthé impg¢rbéink stuff here insert into t_log(info) values (logtext in);
-vailmese (mof8tioggdogngfimpoesaatystuff] ') ;
tegtibialdi’' tEedidponganbpstbéifitheteff] ') ; exception
leguhikdqndBeatbgdonggiévercmeserymportant stuff]') ; when others then
insdotevehombréogripnfoant stuff here
-vadndswxdqtéErdedomngeihpggtagtitnéféssary raise;
ingéhisigtfEndldgingfeyen more important stuff]'); end logthis;
lugthés (44 [EBtanf nmypipgogvem]mpre important stuff]'); /
end+ do even more important stuff here
/ -- and write even more logging if necessary Procedure created
insert into t_log(info) DEMO@demo> exec my_ program
values (q'[End doing even more important stuff]'); PL/SQL procedure successfully completed
insert into t_log(info)
values (q'[End of my program]');
end;

/

DEMO(@demo> select *
from t log
/

Get to know your program by instrumentation October 5, 2022 QUALOGY




My program

ID INFO

create or replace procedure my program

is

begin
logthis (q' [Start of my program]'); 1 Start of my program
logthis (q' [Start doing important stuff]') ; 25-FEB-18 05.38.51.242213 AM
-- do all the important stuff here 2 Start doing important stuff
-- write more logging if necessary 25-FEB-18 05.38.51.255335 AM
logthis (q' [End doing important stuff]'); 3 End doing important stuff
logthis (q' [Start doing even more important stuff]'); 25-FEB-18 05.38.51.259890 AM
-- do even more important stuff here 4 Start doing even more important stuff
-- and write even more logging if necessary 25-FEB-18 05.38.51.264286 AM
logthis (q' [End doing even more important stuff]'); 5 End doing even more important stuff
logthis (q' [End of my program]'); 25-FEB-18 05.38.51.269570 AM

end; 6 End of my program

/ 25-FEB-18 05.38.51.274809 AM

6 rows selected.
DEMO@demo> rollback
/

DEMO@demo> select *

from t log
/

Get to know your program by instrumentation October 5, 2022 QUALOGY




My program

no rows selected.
create or replace procedure my program
is
begin
logthis (q' [Start of my program]');
logthis (q'[Start doing important stuff]');
-- do all the important stuff here
-- write more logging if necessary
logthis (q' [End doing important stuff]');
logthis (q' [Start doing even more important stuff]');
-- do even more important stuff here
-- and write even more logging if necessary
logthis (q' [End doing even more important stuff]');
logthis (q' [End of my program]') ;
end;

/

DEMO@demo>

Get to know your program by instrumentation October 5, 2022 QUALOGY




My program

create or replace procedure my program DEMO@demo> create or replace procedure
is logthis (logtext in in varchar2)
begin is

logthis (q' [Start of my program]'); pragma autonomous transaction;

logthis (q' [Start doing important stuff]'); begin

-- do all the important stuff here insert into t_log(info) values (logtext in);

-- write more logging if necessary commit;

logthis (q' [End doing important stuff]'); exception

logthis (q' [Start doing even more important stuff]'); when others then

-- do even more important stuff here rollback;

-- and write even more logging if necessary raise;

logthis (q' [End doing even more important stuff]'); end logthis;

logthis (q' [End of my program]') ; /

end;
/ Procedure created

DEMO@demo> exec my_ program
PL/SQL procedure successfully completed

DEMO(@demo> select *
from t log
/

Get to know your program by instrumentation October 5, 2022 QUALOGY




My program

ID INFO

create or replace procedure my program

is

begin
logthis (q' [Start of my program]'); 1 Start of my program
logthis (q' [Start doing important stuff]') ; 25-FEB-18 05.38.51.242213 AM
-- do all the important stuff here 2 Start doing important stuff
-- write more logging if necessary 25-FEB-18 05.38.51.255335 AM
logthis (q' [End doing important stuff]'); 3 End doing important stuff
logthis (q' [Start doing even more important stuff]'); 25-FEB-18 05.38.51.259890 AM
-- do even more important stuff here 4 Start doing even more important stuff
-- and write even more logging if necessary 25-FEB-18 05.38.51.264286 AM
logthis (q' [End doing even more important stuff]'); 5 End doing even more important stuff
logthis (q' [End of my program]'); 25-FEB-18 05.38.51.269570 AM

end; 6 End of my program

/ 25-FEB-18 05.38.51.274809 AM

6 rows selected.
DEMO@demo> rollback
/

DEMO@demo> select *

from t log
/

Get to know your program by instrumentation October 5, 2022 QUALOGY



My program

ID INFO

create or replace procedure my program

is

begin
logthis (q' [Start of my program]'); 1 Start of my program
logthis (q' [Start doing important stuff]') ; 25-FEB-18 05.38.51.242213 AM
-- do all the important stuff here 2 Start doing important stuff
-- write more logging if necessary 25-FEB-18 05.38.51.255335 AM
logthis (q' [End doing important stuff]'); 3 End doing important stuff
logthis (q' [Start doing even more important stuff]'); 25-FEB-18 05.38.51.259890 AM
-- do even more important stuff here 4 Start doing even more important stuff
-- and write even more logging if necessary 25-FEB-18 05.38.51.264286 AM
logthis (q' [End doing even more important stuff]'); 5 End doing even more important stuff
logthis (q' [End of my program]'); 25-FEB-18 05.38.51.269570 AM

end; 6 End of my program

/ 25-FEB-18 05.38.51.274809 AM

6 rows selected.
DEMO@demo>

Get to know your program by instrumentation October 5, 2022 QUALOGY



How? DB Logging!

e Not available by default

o DBMS_OUTPUT is NOT logging
e Build your own
e Use Open Source

October 5, 2022 QUALOGY

22 Get to know your program by instrumentation




How? DB Logging!

e Not available by default
o DBMS_OUTPUT is NOT logging
e Build your own
e Use Open Source - with adaptions

October 5, 2022 QUALOGY

23 Get to know your program by instrumentation




Implementing logging

[
[
i
-
0
[l

I

October 5, 2022 QUALOGY

24 Get to know your program by instrumentation




Implementing logging

N
]
4]

[
1
i
i
O
[l
.
i
M
M
[
[l

25 Get to know your program by instrumentation October 5, 2022 QUALOGY



Implementing logging

m
m
m ' . .
o |%
| |

[
1
M
M
=
Ml
[
M
M
M
O
Ml
[
M
M
1
O
Ll
[
M
M
1
QO
iy

26 Get to know your program by instrumentation October 5, 2022 QUALOGY



How?

Get to know your program by instrumentation October 5, 2022 QUALOGY






Logger

e Install in a separate schema
e Grant access to individual users or public
e Cleanup jobs are installed automatically.
o Cleanup logger information older than x days
Severity lower than threshold
o ‘expired’ preferences

QUALOGY



Log Levels

Detailed information

October 5, 2022 QUALOGY

30 Get to know your program by instrumentation



Log Levels

’Qﬂlnformation Program Flow

Detailed information

31 Get to know your program by instrumentation October 5, 2022 QUALOGY




Log Levels

\‘:)/ Warning Non critical errors
\
@ Information Program Flow

Detailed information

< Debug

32 Get to know your program by instrumentation October 5, 2022 QUALOGY




Log Levels

¢ Warning

Critical errors

Non critical errors

@ Information Program Flow

Detailed information

33 Get to know your program by instrumentation October 5, 2022 QUALOGY




Log Levels

@/ Warning

Critical errors

Non critical errors

@ Information Program Flow

Detailed information

October 5, 2022 QUALOGY




Log Levels

L@ Warning
ﬁmri}@flnformation Program Flow

Critical errors

Non critical errors

35 Get to know your program by instrumentation October 5, 2022 QUALOGY




Log Levels

G ¢ Warning '

Critical errors

Non critical errors

36 Get to know your program by instrumentation October 5, 2022 QUALOGY



Log Levels

Critical errors

37 Get to know your program by instrumentation October 5, 2022 QUALOGY




Current Loglevel — One switch to rule them all

@ e Error — All critical errors

—

October 5, 2022 QUALOGY

38 Get to know your program by instrumentation




Current Loglevel — One switch to rule them all

@ ¢ Error — All critical errors
| « Warning - All non critical errors

39 Get to know your program by instrumentation October 5, 2022 QUALOGY



Current Loglevel — One switch to rule them all

e Error — All critical errors
~ | « Warning — All non critical errors
/2 . . .
0 e Information — Information for instance about program flow

lﬂ lﬂ lﬂ lz‘l !51 w uz‘l l;‘l lﬂ

40 Get to know your program by instrumentation October 5, 2022 QUALOGY

||l gy




Current Loglevel — One switch to rule them all

ll ¢ Error — All critical errors

e Warning — All non critical errors

e Information — Information for instance about program flow
| » Debug - All information you might be interested in

1l
o
[l
o
[l
(i
1]
[l
1]
(i
1]
|
[l
-
[l

l% 151 lﬂ ) 'E‘I = .E‘l .E‘I .E]

41 Get to know your program by instrumentation October 5, 2022 QUALOGY

||l gy




Get to know your program by instrumentation October 5, 2022 QUALOGY



How to use

create or replace package body logger example is
gc_scope prefix constant varchar2 (258) := lower (user) || '.' ||
lower ($$plsql unit) || '.';

procedure foo is .
Objectnames

can be 128
since 12.2

function bar return number is
end logger example;

Get to know your program by instrumentation October 5, 2022

HawW
TO...‘

QUALOGY

"




How to use

create or replace package body logger example is
gc_scope prefix constant varchar2(258) := lower(user) || '.' ||
lower ($$plsql unit) || '.';

procedure - is
1l scope logger logs.scope%type := gc_scope prefix || -';
1l params logger.tab param;
1 number;

begin

end foo;

function bar return number is
end logger example;

HawW
TO...‘

e

Get to know your program by instrumentation October 5, 2022 QUALOGY



How to use

create or replace package body logger example is
gc_scope prefix constant varchar2(258) := lower(user) || '.' ||
lower ($Splsgl unit) || '.’;

procedure - is
1l scope logger logs.scope%type := gc_scope prefix || -';
1l params logger.tab param;

1 number;
begin
|Llogger.log information|p text => '(' || $Splsqgl_line || ') Start'
,P_scope => 1 scope) ;
end foo;

function bar return number is
end logger example;

Get to know your program by instrumentation October 5, 2022

HawW
TO...‘

QUALOGY

e




How to use

create or replace package body logger example is
gc_scope prefix constant varchar2(258) := lower(user) || '.' ||
lower ($Splsgl unit) || '.’;

procedure foo is

1l scope logger logs.scope%type := gc_scope prefix || 'foo';
1l params logger.tab param;
1 number ;
begin
|Llogger.log information|p text => '(' || $Splsqgl_line || ') Start'

,P_scope => 1 scope) ;
|logger.logkp_text => '(' || $S$plsqgl line || ") ' ||

'Do something important'’
,p_scope => 1 scope) ;

end foo;

function bar return number is
end logger example;

Get to know your program by instrumentation October 5, 2022

HawW
TO...‘

QUALOGY

7




How to use

create or replace package body logger example is
(I

gc_scope prefix constant varchar2(258) := lower (user)
lower ($Splsgl unit) || '.’;

procedure foo is
1l scope logger logs.scope%type := gc_scope prefix || 'foo';
1l params logger.tab param;
1 number;
begin
=> "(' || $Splsgl line || ') Start'’

logger.log information (p_text
,P_scope => 1 scope) ;

|logger.logkp_text => '(' || $S$plsqgl line || ") ' ||
'Do something important'’

|_mgpuLh_scope) ;

for indx in 1 .. 10 loop
l := indx * indx;

if 1 > 100 then
logger.log warning(p_text => '(' || $$plsql line || ") " || '"[" ||
sqlcode || ']" || sqlerrm ||
'Value higher than expected' Hﬁ?”
e

7

,P_scope => 1 scope
,p_extra

end if;
October 5, 2022 QUALOGY

=> dbms_utility.format error backtrace); W,

Get to know your program by instrumentation




How to use

procedure foo is

1l scope logger logs.scope%type := gc_scope prefix || 'foo';
1l params logger.tab param;
1 number ;
begin
logger.log information(p text => '(' || $$plsqgl _line || ') Start'
,P_scope => 1 scope) ;
logger.log(p_text => '(' || $Splsql line || ') ' ||

'Do something important'
,p_scope => 1 scope) ;
for indx in 1 .. 10 loop
1l := indx * indx;
if 1 > 100 then
ﬂogger.log warning|(p_text => '(' || $$plsql line || ') " || '"[" ||
sqlcode || ']" || sqlerrm ||
'Value higher than expected'
| | p_scope => 1 scope
,p_extra => dbms_utility.format error backtrace);

end if;
end loop; Haow
logger.log information(p text => '(' || $$plsql line || ') End' T0..4
,P_scope => 1 scope) ; !!
exception '

October 5, 2022 QUALOGY

Get to know your program by instrumentation



How to use

begin
logger.log information(p text => '(' || $$plsqgl _line || ') Start'
,P_scope => 1 scope) ;
logger.log(p_text => '(' || $Splsql line || ') ' ||

'Do something important'
,p_scope => 1 scope) ;
for indx in 1 .. 10 loop
1l := indx * indx;
if 1 > 100 then
logger.log warning(p_text => '(' || $$plsql line || ") " || '"[" ||
sgqlcode || ']" || sqlerrm ||
'Value higher than expected’
,P_scope => 1 scope
,p_extra => dbms_utility.format error backtrace);

end if;
end loop;
[Togger.log information|(p text => '(' || $$plsqgl line || ') End’
o i ,P_scope => 1 scope) ;
exception
when others then
logger.log error(p_text => '(' || $Splsql line || ") ' || '[" ||

sglcode || ']' || sgqlerrm ||
'Something bad happened'’

Get to know your program by instrumentation October 5, 2022

HawW
TO...‘

QUALOGY

7




How to use.

'Do something important'’

,p_scope => 1 scope) ;
for indx in 1 10 loop
1l := indx * indx;
if 1 > 100 then

logger.log warning(p_text => '(' || $$plsql line || ") " || '"[" ||
sgqlcode || ']" || sqlerrm ||
'Value higher than expected'
,P_scope => 1 scope
,p_extra => dbms_utility.format error backtrace);
end if;
end loop;
logger.log information(p text => '(' || $$plsql line || ') End'
,P_scope => 1 scope) ;
exception
when others then
|Logger.log error|(p_text => '(' || $$plsql line || ') " || '[" ||
sglcode || ']' || sqlerrm ||

'Something bad happened’

,P_scope => 1 scope
,p_extra => dbms_utility.format error backtrace) ;

end foo;

Get to know your program by instrumentation

October 5, 2022

How
T0...,

QUALOGY

e




How to use

function bar return number is

1l scope logger logs.scope%type := gc_scope prefix || 'bar';
1l params logger.tab param;
1 number;
begin
logger.log information(p text => '(' || $$plsql _line || ') Start'
,P_scope => 1 scope) ;
logger.log(p_text => '(' || $Splsql line || ") ' ||

'Do something important'’
,p_scope => 1 scope) ;
for indx in 1 .. 10 loop

— H

if 1 > 100 then
logger.log_warning (p_text => '(' || $$plsql_line || ') ' || '[' ||
sqlcode || ']" || sqlerrm ||
'Value higher than expected'
,P_scope => 1 scope
,p_extra => dbms_utility.format error backtrace);

end if;
end loop; How
logger.log information(p text => '(' || $$plsql line || ') End' 10..,
,p_scope => 1 scope) ; !!

return 1;

October 5, 2022 QUALOGY

Get to know your program by instrumentation







Performance impact

__

NO LOGGING I 1349.898 1366.551 1388.812 1346.186
CONDITIONAL LOGGING 6753.144 3680.01 1406.855 1466.653
WITH LOGGING 5016.108 2894.90 1463.405 1510.79
NO LOGGING UDT 1413.5 1346.87 1350.788 1358.918

CONDITIONAL LOG UDT 7937.094 3510.1) 1421.966 1452./66
WITH LOGGING UDT 6346.311 4130.85  2258.73 2322.99 2348.085
Times in milliseconds Repeat each test: 100

Repeat all tests: 20

Get to know your program by instrumentation October 5, 2022 QUALOGY



Conversion of User Defined Types

xml type (udt)

DEPTNO NUMBER (2) -getclobval
DNAME VARCHAR?2 (14)
LOC VARCHAR2 (

EMPNO NUMBER (

ENAME VARCHAR2 (10)

JOB VARCHAR?2 (9)

MGR NUMBER (4)

HIREDATE DATE

SAL NUMBER (7, 2)
COMM NUMBER (7, 2)
DEPTNO NUMBER (2)

Get to know your program by instrumentation October 5, 2022 QUALOGY



















How to find your lines of interest

select *
from logger logs 11
order by 1l1l.id desc

1 484641 8(109) End 29-APR-18 05.07.47.340845 AM demo.logger_example.showall PL/SQL De
2 484640 2(101) [0O]ORA-0000: normal, successful completionValue is TOO high 29-APR-18 05.07.47.340333 AM demo.logger_example.showall PL/SQL De
3 484639 4(87) [0]ORA-0000: normal, successful completionValue higher than expected 29-APR-18 05.07.47.340058 AM demo.logger_example.showall PL/SQL D=
4 484638 16(85) | =225 29-APR-18 05.07.47.339739 AM demo.logger_example.showall PL/SQL De:
5 484637 16(83) indx = 15 29-APR-18 05.07.47.339345 AM demo.logger_example.showall PL/SQL D¢

Get to know your program by instrumentation October 5, 2022 QUALOGY




How to find your lines of interest
Use subset of the columns

select 11.id, 1ll.sid, 1ll.logger level, 1ll.text, 1ll.scope, ll.extra
from logger logs 11
order by 1l1.id desc;

1 484641 156 8(109) End demo.logger_example.showall <CLOB>
2 484640 156 2(101) [0JORA-0000: normal, successful completionValue is TOO high demo.logger_example.showall <CLOB>
3 484639 156 4 (87) [0]ORA-0000: normal, successful completionValue higher than expected demo.logger_example.showall <CLOB>
4 484638 156 16(85) | =225 demo.logger example.showall <CLOB>
5 484637 156 16 (83) indx = 15 demo.logger_example.showall <CLOB>
6 484636 156 2(101) [0JORA-0000: normal, successful completionValue is TOO high demo.logger_example.showall <CLOB>
7 484635 156 4(87) [0]ORA-0000: normal, successful completionValtie higher than expected demo.logger example.showall <CLOB>

Get to know your program by instrumentation October 5, 2022 QUALOGY




How to find your lines of interest
Use SID

select 11.id, 1ll.sid, 1ll.logger level, 1ll.text, 1ll.scope, ll.extra
from logger logs 11

where 11l.sid = &SID

order by 1l1l.id desc;

1 484641 156 8(109) End demo.logger_example.showall <CLOB>
2 484640 156 2(101) [0JORA-0000: normal, successful completionValue is TOO high demo.logger_example.showall <CLOB>
3 484639 156 4 (87) [0]ORA-0000: normal, successful completionValue higher than expected demo.logger_example.showall <CLOB>
4 484638 156 16(85) | =225 demo.logger example.showall <CLOB>
5 484637 156 16 (83) indx = 15 demo.logger_example.showall <CLOB>
6 484636 156 2(101) [0JORA-0000: normal, successful completionValue is TOO high demo.logger_example.showall <CLOB>
7 484635 156 4(87) [0]ORA-0000: normal, successful completionValtie higher than expected demo.logger example.showall <CLOB>

Get to know your program by instrumentation October 5, 2022 QUALOGY




How to find your lines of interest
Use LOGGER_LEVEL

select 11.id, 1ll.sid, 1ll.logger level, 1ll.text, 1ll.scope, ll.extra
from logger logs 11

where 1ll.logger level = &LOGGER LEVEL

order by 1l1l.id desc;

1 484641 156 8(109) End demo.logger_example.showall <CLOB>
2 484640 156 2(101) [0JORA-0000: normal, successful completionValue is TOO high demo.logger_example.showall <CLOB>
3 484639 156 4 (87) [0]ORA-0000: normal, successful completionValue higher than expected demo.logger_example.showall <CLOB>
4 484638 156 16(85) | =225 demo.logger example.showall <CLOB>
5 484637 156 16 (83) indx = 15 demo.logger_example.showall <CLOB>
6 484636 156 2(101) [0JORA-0000: normal, successful completionValue is TOO high demo.logger_example.showall <CLOB>
2 494635 156 11(87) [0JORA-0000: normal, successful completionValtie higher than expected demo.logger example.showall <CLOB>

Get to know your program by instrumentation October 5, 2022 QUALOGY




How to find your lines of interest
Use TEXT

select 11.id, 1ll.sid, 1ll.logger level, 1ll.text, 1ll.scope, ll.extra
from logger logs 11

where 11l.text like '$&TEXTS'

order by 1l1l.id desc;

1 484641 156 8(109) End demo.logger_example.showall <CLOB>
2 484640 156 2(101) [0JORA-0000: normal, successful completionValue is TOO high demo.logger_example.showall <CLOB>
3 484639 156 4 (87) [0]JORA-0000: normal, successful completionValue higher than expected demo.logger_example.showall <CLOB>
4 484638 156 16(85) 1 =225 demo.logger example.showall <CLOB>
5 484637 156 16 (83) indx = 15 demo.logger_example.showall <CLOB>
6 484636 156 2(101) [0JORA-0000: normal, successful completionValue is TOO high demo.logger_example.showall <CLOB>
7 484635 156 4(87) [OJORA-0000: normal, successful completionValte higher than expected demo.logger example.showall <CLOB>

Get to know your program by instrumentation October 5, 2022 QUALOGY




How to find your lines of interest
Use SCOPE

select 11.id, 1ll.sid, 1ll.logger level, 1ll.text, 1ll.scope, ll.extra
from logger logs 11

where 1l1l.scope like '$&SCOPES'

order by 11.id desc;

1 484641 156 8(109) End demo.logger_example.showall <CLOB>
2 484640 156 2(101) [0JORA-0000: normal, successful completionValue is TOO high demo.logger_example.showall <CLOB>
3 484639 156 4 (87) [0]ORA-0000: normal, successful completionValue higher than expected demo.logger_example.showall <CLOB>
4 484638 156 16(85) | =225 demo.logger example.showall <CLOB>
5 484637 156 16 (83) indx = 15 demo.logger_example.showall <CLOB>
6 484636 156 2(101) [0JORA-0000: normal, successful completionValue is TOO high demo.logger_example.showall <CLOB>
7 484635 156 4(87) [0]ORA-0000: normal, successful completionValtie higher than expected demo.logger example.showall <CLOB>

Get to know your program by instrumentation October 5, 2022 QUALOGY




How to find your lines of interest
Use this script

/***

*

* \ \ I

* /o /N N L N_ N1/ N <
* /o N_/- N | // NI 1 <>) /_/ > |
* \ N \_/ /( / /\ /\ // I
* \__ > \/ / / N/

*/

/%

* Script: CheckLogs
* Author: Patrick Barel
* Purpose: Retrieve the lines from the LOGGER LOGS table based on the parameters

* provided

* Parameters: - LastMinutes : The number of minutes to look back in the table.
* No value means 45 days

* - TextLike : This text should be in the TEXT field

* - TextNOTLike : This text should NOT be in the TEXT field

* — Scopelike : The SCOPE should be like this

* - ScopeNOTLike : The SCOPE should NOT be like this

Get to know your program by instrumentation October 5, 2022 QUALOGY




How to find your lines of interest
Use this script

/*

* Script: CheckLogs

* Author: Patrick Barel

* Purpose: Retrieve the lines from the LOGGER LOGS table based on the parameters
* provided

* Parameters: - LastMinutes : The number of minutes to look back in the table.
* No value means 45 days

* - TextLike : This text should be in the TEXT field

* - TextNOTLike : This text should NOT be in the TEXT field

* — Scopelike : The SCOPE should be like this

* - ScopeNOTLike : The SCOPE should NOT be like this

* - MinLoglevel : The minimum LOGGER LEVEL you are interested in
* - MaxLoglevel : The maximum LOGGER LEVEL you are interested in
* - Usernamelike : The Username should be like this

* — UsernameNOTLike : The Username should NOT be like this

* 20210208 PBA: Added log prefix and suffix to display the extra info, even

*

when the level requested is lower
* 20220308 PBA: Added User

&)

with theparameters as

Get to know your program by instrumentation October 5, 2022 QUALOGY




How to find your lines of interest
Use this script

with theparameters as
(select /* LastMinutes is given in minutes, this must be separated into days,
hours and minutes */
floor (nvl2('&LastMinutes', '&LastMinutes', '65536') / (24 * 60)) days
, mod(floor (nvl2('&LastMinutes', '&LastMinutes', '65536') / 60), 24) hours
, mod(nvl2('&LastMinutes', '&LastMinutes', '65536'), 60) minutes
/* TextLike sent in must be prefixed and suffixed by a % */
, '%'" || '&TextLike' || '$%' textlike
/* if input for TextNOTLike is null then return some gibberish */
, nvl2 ('&TextNOTLike', '%&TextNOTLike%', '%#7@*()%') textnotlike
/* ScopelLike sent in must be prefixed and suffixed by a % */
, '%'" || '&Scopelike' || '%' scopelike
/* if input for ScopeNOTLike is null then return some gibberish */
, nvl2('&ScopeNOTLike', '%&ScopeNOTLike%', '$#"Q@*()%') scopenotlike
/* If no value is provided use a ridiculously low value */
, hwl2 ('&MinLogLevel', '&MinLoglevel', '-65536') minloglevel
/* If no value is provided use a ridiculously high value */
, nvl2 ('&MaxLogLevel', '&MaxLoglevel', '65536') maxloglevel
/* UsernameLike sent in must be prefixed and suffixed by a % */
, '%'" || '"&Usernamelike' || '%' usernamelike

Get to know your program by instrumentation October 5, 2022 QUALOGY




How to find your lines of interest
Use this script

select 11.id
, 11l.sid
, 11.logger level
; 1l.time stamp
, 11.scope
; 11. text
, 1ll.extra
, 1ll.user name
, case
when 1l1.text not like '%Start%'
then 1l.time stamp - lead(ll.time stamp) over
(partition by 1ll.sid, 1ll.scope order by ll.time stamp desc)
else null
end interval
, Systimestamp
, aa prefix
, aa_suffix
from logger logs 11
cross Jjoin theparameters
where 1 = 1

Get to know your program by instrumentation October 5, 2022 QUALOGY



How to find your lines of interest
Use this script

cross join theparameters

where 1 =1

and 1ll.time stamp > systimestamp - to_dsinterval (theparameters.days
[l ' ' || theparameters.hours
[l ':' || theparameters.minutes
|l ":00")

and 11. text like theparameters. textlike

and 11. text not like theparameters. textnotlike

and 1l1. scope like theparameters.scopelike

and 11. scope not like theparameters. scopenotlike

and ll.user name like theparameters.usernamelike

and ll.user name not like theparameters.usernamenotlike

and ll.logger level >= theparameters.minloglevel

and ( 1ll.logger level <= theparameters.maxloglevel

or ( theparameters.maxloglevel >= 2
and 1ll.scope like aa prefix || '3%' || aa_suffix || '%'

)
)

order by 1ll.time stamp desc

/

Get to know your program by instrumentation October 5, 2022 QUALOGY




Enhancements

71 Logger, Instrumentation in PL/SQL QUALOGY



Current Loglevel — One switch to rule them all

Log
Level

Get to know your program by instrumentation October 5, 2022 QUALOGY



New Loglevel — One switch per scope

Master
Level

73 Get to know your program by instrumentation October 5, 2022 QUALOGY



New Loglevel — One switch per scope

Master Current
Level Development

74 Get to know your program by instrumentation October 5, 2022 QUALOGY



New Loglevel — One switch per scope

Master Current Read
Level Development Settings

75 Get to know your program by instrumentation October 5, 2022 QUALOGY




New Loglevel — One switch per scope

, L
Master Current Read Write log
Level Development Settings information

76 Get to know your program by instrumentation October 5, 2022 QUALOGY




New Loglevel — One switch per scope

Master Current Read Write log
Level Development Settings information

77 Get to know your program by instrumentation October 5, 2022 QUALOGY




Test program

create or replace package logger specific as
procedure normal behaviour;
procedure just show_errors;
procedure this needs investigation;
procedure run_all;

end;

/

create or replace package body logger specific
procedure normal behaviour is
procedure just show_errors is
procedure this needs investigation as
procedure run_ all is
logger specific.normal behaviour;
logger specific.just_show_errors;
logger specific.this needs investigation;
end;
end;

/

78 Get to know your program by instrumentation

October 5, 2022

QUALOGY




Same content

procedure normal behaviour is
1 scope logger logs.scope3type := gc_scope prefix || 'normal behaviour';
1 params logger.tab param;
begin
logger.log information(p_text => '(' || $$plsql_line || ') Start',6 p_scope => 1l _scope);
-- write a debug message
logger.log(p_text => '('|| $$plsqgl _line || ") ' || 'This is a debug message in '||l_scope
,P_scope => 1 scope) ;
-- write an information message
logger.log _information(p_text => '(' || $$plsql line || ') ' || 'This is an information message in '||1l_scope
,P_scope => 1 scope) ;
-- write a warning message
logger.log warning(p_text => '(' || $$plsql _line || ") ' || '"[' || sqlcode || ']1"' || sqlerrm ||
'This is a warning message in '||l_scope
,P_scope => 1 scope
,p_extra => dbms_utility.format error backtrace) ;
-- write an error message
logger.log error(p_text => '(' || $Splsql line || ') ' || '"[' || sqlcode || ']1' || sqlerrm ||
'This is an error message in '||l_scope
,P_scope => 1 scope
,p_extra => dbms_utility.format error backtrace) ;
logger.log information(p_text => '(' || $$plsql_line || ') End', p_scope => 1 scope);
end;

79 Get to know your program by instrumentation October 5, 2022 QUALOGY




Same content

procedure just show_errors is
1 scope logger logs.scope3type := gc_scope prefix || 'just_show_errors';
1 params logger.tab param;
begin
logger.log information(p_text => '(' || $$plsql_line || ') Start',6 p_scope => 1l _scope);
-- write a debug message
logger.log(p_text => '('|| $$plsqgl _line || ") ' || 'This is a debug message in '||l_scope
,P_scope => 1 scope) ;
-- write an information message
logger.log _information(p_text => '(' || $$plsql line || ') ' || 'This is an information message in '||1l_scope
,P_scope => 1 scope) ;
-- write a warning message
logger.log warning(p_text => '(' || $$plsql _line || ") ' || '"[' || sqlcode || ']1"' || sqlerrm ||
'This is a warning message in '||l_scope
,P_scope => 1 scope
,p_extra => dbms_utility.format error backtrace) ;
-- write an error message
logger.log error(p_text => '(' || $Splsql line || ') ' || '"[' || sqlcode || ']1' || sqlerrm ||
'This is an error message in '||l_scope
,P_scope => 1 scope
,p_extra => dbms_utility.format error backtrace) ;
logger.log information(p_text => '(' || $$plsql_line || ') End', p_scope => 1 scope);
end;

80 Get to know your program by instrumentation October 5, 2022 QUALOGY




Same content

procedure this needs investigation is
1l scope logger logs.scope3type := gc_scope prefix || 'this needs investigation';
1 params logger.tab param;
begin
logger.log information(p_text => '(' || $$plsql_line || ') Start',6 p_scope => 1l _scope);
-- write a debug message
logger.log(p_text => '('|| $$plsqgl _line || ") ' || 'This is a debug message in '||l_scope
,P_scope => 1 scope) ;
-- write an information message
logger.log _information(p_text => '(' || $$plsql line || ') ' || 'This is an information message in '||1l_scope
,P_scope => 1 scope) ;
-- write a warning message
logger.log warning(p_text => '(' || $$plsql _line || ") ' || '"[' || sqlcode || ']1"' || sqlerrm ||
'This is a warning message in '||l_scope
,P_scope => 1 scope
,p_extra => dbms_utility.format error backtrace) ;
-- write an error message
logger.log error(p_text => '(' || $Splsql line || ') ' || '"[' || sqlcode || ']1' || sqlerrm ||
'This is an error message in '||l_scope
,P_scope => 1 scope
,p_extra => dbms_utility.format error backtrace) ;
logger.log information(p_text => '(' || $$plsql_line || ') End', p_scope => 1 scope);
end;

81 Get to know your program by instrumentation October 5, 2022 QUALOGY




Run the program in Debug mode [NoScope]

declare select 1ll.logger level 1lvl

procedure set log level (level in varchar2) is +11l.text

. ,11.scope
procedure set scope level (scope in in varchar2 from logger_logs 1l

,level in in varchar2) is where 1 =1
. - and trunc(ll.time stamp) = trunc(systimestamp)
begin order by 11.id asc
set_log level ('DEBUG') ;
logger specific.run all;
end;

/

82 Get to know your program by instrumentation October 5, 2022 QUALOGY




Run the program in Warning mode [Scope]

declare select 1ll.logger level 1lvl

procedure set log level (level in varchar2) is +11l.text
,11.scope

procedure set scope level (scope in in varchar2 from logger_logs 1l

,level in in varchar2) is where 1 =1
and trunc(ll.time stamp) = trunc(systimestamp)

begin order by 11l.id asc

set_log level ('WARNING') ;
set_scope level (user| |'.LOGGER SPECIFIC.JUST_ SHOW_ERRORS’
, "ERROR"') ;
set _scope_ level (user| |'.LOGGER SPECIFIC.THIS NEEDS INVESTIGATION’
, '"DEBUG’ ) ;
logger specific.run all;
end;

/

LVL TEXT

[0]JORA-0000: , successful completionThis is a warning message in demo.logger_ specific.normal behaviour .logger_specific.normal behaviour
[0]JORA-0000: , successful completionThis is an error message in demo.logger_ specific.normal behaviour .logger_specific.normal behaviour
[0]JORA-0000: , successful completionThis is an error message in demo.logger_ specific.just_show errors .logger_specific.just show_errors
Start .logger_specific.this needs_ investigation
This is a debug message in demo.logger specific.this needs_investigation .logger_specific.this needs_ investigation
This is an information message in demo.logger specific.this_needs_investigation .logger_specific.this needs_ investigation
[0]ORA-0000: normal, successful completionThis is a warning message in demo.logger specific.this needs_investigation .logger_specific.this needs_ investigation
[0]ORA-0000: normal, successful completionThis is an error message in demo.logger_ specific.this needs investigation .logger_specific.this needs_ investigation
End .logger_specific.this needs_ investigation

N OWWOOBOWNMNNDNN

rows selected

83 Get to know your program by instrumentation October 5, 2022 QUALOGY







October 5, 2022 QUALOGY

85 Get to know your program by instrumentation




Hello helpdesk,
Something went terribly
wrong. Can you please help
me?

Get to know your program by instrumentation October 5, 2022 QUALOGY



Thank you for calling. Could
you please repeat the exact
steps that lead to the error?

Get to know your program by instrumentation October 5, 2022 QUALOGY




Do you expect me to
memorize all the steps I
take until my task completes
successfully?

Get to know your program by instrumentation October 5, 2022 QUALOGY



This way I can turn on the
debugging program and get
more information on what
lead to this error.

Get to know your program by instrumentation October 5, 2022 QUALOGY




There has got to
be a better way
to do this

Get to know your program by instrumentation October 5, 2022 QUALOGY




o

-

N

91 Get to know your program by instrumentation October 5, 2022 QUALOGY




92 Get to know your program by instrumentation October 5, 2022 QUALOGY




Get to know your program by instrumentation October 5, 2022 QUALOGY




Hello helpdesk,
Something went terribly
wrong. Can you please help
me?

Get to know your program by instrumentation October 5, 2022 QUALOGY



Please hold while I check the
logs for the source of the
problem.

Get to know your program by instrumentation October 5, 2022 QUALOGY




So you can see exactly what
steps I took in the program?

Get to know your program by instrumentation October 5, 2022 QUALOGY



Only the last steps that lead
to this error. Nothing else.

Get to know your program by instrumentation October 5, 2022 QUALOGY




Resources

e OraOpenSource - Your source for Oracle Open Source
https://github.com/OraOpenSource
https://github.com/OraOpenSource/Logger

e Log by Scope - Patch72 Fork of the Logger Framework
https://github.com/patch72/Logger

98 Get to know your program by instrumentation October 5, 2022 QUALOGY







Oracle Cloud Infrastructure

o A

New Free Tier Always Free =

_————
Services you can use for unlimited time pe

oracle.com/cloud/free +
30-Day Free Trial

Free credits you can use for more services




