ORACLE

Database Performance Core Principles

Toon Koppelaars
Consulting Member of Technical Staff
Real-World Performance

Server Technologies

About Me

Part of Oracle eco-system since 1987

* Have done and seen quite a lot of application development
» Database design, SQL and PL/SQL

(34 @ToonKoppelaars
Big fan of "Using Database As a Processing Engine”

* Not just as a layer to persist data - ‘“J
Applied
Member of Oracle’s Real-World Performance Group Mathematics

ror Database
Professionals

Lee do Haan and Toon Roopelasrs

ORACLE
REAL-WORLD PERFORMANCE

_ I QANYRILY = ,ﬂﬁv«//hﬂ' ﬂ[/"‘; fy"y/s o - — // P O

My Dilemma...

* That what you are about to hear, is probably not going to be of much help to you
* Why?
* Because you are stuck with applications that can’t be changed

* Those applications could run faster *and* use less computing resources, yet would require re-
architecting

* |canonly create awareness of this

* My hope is that you can use this talk’s knowledge to influence architectural decisions of future

applications
ORACLE
REAL-WORLD PERFORMANCE

- e VY T e
_ | ANV T "‘3‘, r& 0/")/ L o

Performance Core Principles: Why?

* Ifl have asingle CPU how many processes can be active at any one time?
* Andif I have four CPU’s?

* What's the implication if there are more processes wanting to run than there are CPU’s?

* If my process needs to access an external resource (network, 1/0) what happens to it?

* Once request has finished, what decides when my process gets back onto CPU and how much is
it allocated?

* Whatis the difference between user and sys CPU?

Agenda

Database Performance Core Principles
* Implications of Oracle’s Process Based Architecture
* End User Response Time, Throughput, and DB Time

What happened last two decades with application development?
* It fundamentally moved away from these principles

ORACLE
REAL-WORLD PERFORMANCE

Database Performance Core Principles

Oracle instance = Process based architecture:

Foreground process is serving your database calls

To perform efficiently:
1. process needs to get on CPU as quickly as possible

Process needs to stay on CPU as long as possible:

2. process shouldn’t go to sleep voluntarily a lot
3. process should experience as few involuntary sleeps as possible

ORACLE
REAL-WORLD PERFORMANCE

1: Get On CPU

Oracle
Foreground
Process

Idle/sleeping

Idle

ORACLE
REAL-WORLD PERFORMANCE

Application issues

1: Get On CPU database call

l OS receives interrupt:
figures out which process to
wake-up
Scheduler needs to get this
process on CPU

Oracle
Foreground
Process

Idle/sleeping

J

Idle

OS and scheduler is
reported as SYS cpu

{ All work performed by]

ORACLE
REAL-WORLD PERFORMANCE

B R | |\ R [/ [/ 7

1: Get On CPU
* Only one process can be on a core at a time CPU Utilization Chance of getting scheduled
(it's either 1 or o) immediately
* How quickly you can get on core depends 50% 1in2
on current utilization
66% 1in3
 Higher busy rate =» higher chance of 75% 1in4
spending time on run-queue before getting
scheduled 80% 1ins
* Less straightforward with multiple cores 90% 1in10

- e VY T e
_ ! L W e S ’4";, & 0/l¢/ /"y’l/)"\rv"-"‘,.v" a ~ s

Impact of CPU Utilization on Database Call Response Time

* Notonly does it take longer to get on CPU, moreover:
* Busy rate has measurable impact on DB-call response time

* Which becomes noticeable when CPU has 60-65+% busy rate
* Thisis in essence basic queueing theory, nothing new...

ORACLE
REAL-WORLD PERFORMANCE

- e VY T e
_ | ANV T "‘3‘, r& 0/")/ L o

Database Call Response Time, Single Core

R=S/(1-U) Random arrival R=S/(1-U)
25
| Thisis an
Response time v 20 exponential curve
Service time =
Utilization% L
C
S 10
(7]
QL
oc
5
R-S = queue-time o
whllg resource is 0 90 10 60 80 100
servicing others *
% in-Use (Busy-rate)

ORACLE
REAL-WORLD PERFORMANCE

More Complex With Multiple Cores

Every system starts queueing at some point, impacting response times
This depends upon:
* Arrival rate, service times, number of cores, and busy rate

4)
On busy system,

significant portion of
this is queuing-time

L\/ J
< > Response time

You never want database server to
be running at full capacity all the
time:

9 stay well clear of 100% busy) _oracLe E

REAL-WORLD PERFORMANCE

CPU busy-rate

2: Stay on CPU, not Go to Sleep Voluntarily a Lot

Insert 10 rows
< row-by-row

Array-based or stored proc 2 One database call

Ten database calls

Completed 10 calls
10 Voluntary sleeps
Scheduled 10 times

Oracle
Foreground
Process

Oracle
Foreground
Process

J

10 CPU Thread
Context Switches
(more SYS cpu)

ORACLE
REAL-WORLD PERFORMANCE

Operation Cost in CPU Cycles

Not all CPU operations are created equal

10° 10° 10?2 10° 10°

“Simple” register-register op (ADD,OR,etc.)
Memory write

Bypass delay: switch between

integer and floating-point units

“Right” branch of “if”

Floating-point/vector addition

Multiplication (integer/float/vector)

Return error and check

L1 read

TLB miss

L2 read

“Wrong” branch of “if” (branch misprediction)
Floating-point division

128-bit vector division

Atomi

104 10°
On 3 GHz core
this is 0.33 ms
This is about 3 ps

Fetch by rowid
takes 6-10 ps

(12]
13 |
3-4 |
[10-12]

10—20
T

C function di
Integer

C function indi
C++ virtual func

Thread context switch (total costs,

- S T— - | —

including cache invalidation)

This is where Oracle Main RAM read

erent-socket atomics S
(guesstimate)
UMA: different-socket L3 read

code spends most of ['
its time

oo so |
KernelCall
osts) X

Thread context switch (total costs,
including cache invalidation)

Distance which light travels
while the operation is performed

10000 - 1 million

30m -
< > = ..ﬂm-.
« & 300m 30km

2: Stay on CPU, not Go to Sleep Voluntarily a Lot

One database call

entries and exits

:l Scheduled 10 times

Ten database calls
4 10 Operating system]

Oracle
Foreground
Process

Oracle
Foreground
Process

10 Context Switches

~
10 Oracle kernel entries
and exits
J

ORACLE
REAL-WORLD PERFORMANCE

Oracle Kernel Entry and Exit

* Like athread context switch, this too is measurable overhead
If your calls are small and fast

ORACLE’
REAL-WORLD PERFORMANCE

> i P TF & 4
_ ! L W Y = o P BISLE TS = =

Oracle Kernel Entry and Exit

* We measured thisin alab environment

* Insummary:
* Simple batch process
e BuiltinJava
* Single threaded
* Mix of single row selects, single row inserts and single row deletes
» Allissued (sequentially) over JDBC to database
* Generating 9000 calls per second

* Using “perf”, we profiled foreground process to see where CPU time is spent

ORACLE
REAL-WORLD PERFORMANCE

Visualizing CPU Usage With Flamegraph

* Perfsamples n times per second, the call-stack of your process’ execution thread
* Flamegraph visualizes this

Visualizing This Via FlameGraphs

Width of top-surface represents where time is spent

\

_——-

Width represents # of samples = cpu-time spent

ORACLE’
REAL-WORLD PERFORMANCE

)
..TF
L O
SO awm
Pul
c D =
tpW
)
- XY —
VLW g
I un o
D

4

— T e i —

Oracle Kernel Entry and Exit

—— T ———
—_— —_— o — - CoscemED D W

.lll'lmmm.h_i

L5

ftuitd =P |

o
i

—===0

ORACLE’
REAL-WORLD PERFORMANCE

How to Spot This in AWR Report

Load Profile

DB Time(s):

DB CPU(s):
Background CPU(s):
Redo size (bytes):
Logical read (blocks):
Block changes:
Physical read (blocks):
Physical write (blocks):
Read |0 requests:
Write 10 requests:
Read 10 (MB):

Write 10 (MB):

IM scan rows:

Session Logical Read IM:

User calls:

Parses (SQL):

Hard parses (SQL):
SQL Work Area (MB):
Logons:

Executes (SQL):
Rollbacks:
Transactions:

" Per second ||

19.1

18.5

0.1
5,900,374.3
1,165,406.1
71,814.5
77.6

707.4

77.0

302.9

0.6

5.5

0.0

43,016.0
11,7037
0.1

664.5

13
30,872.0
0.0

840.6

Top 10 Foreground Events by Total Wait Time

DB CPU 28,2K
log file sync 1,248,495 12449

96.6
1.00 4.3 Commit

S event | Waits | Total Wait Time (sec) | Weit Avgims) | % DB time | WaitClass |

SQL"*Net roundtrips to/from client

48,911,464

Time Model Statistics

e DB Time represents total time in user calls
» DB CPU represents CPU time of foreground processes

DB CPU >> Ireground and background proces

. 'background" measure backgroun
5ql execute elapsed time escending order, followed by Staff

Statistic Name % of DB Time

DB CPU 28,214.31 96.64
sql execute elapsed time 17,972.94 61.56
PL/SQL execution elapsed time 1,384.76 474

10,000 seconds of USER cpu
spent on entry/exit

]

parse time elapsed 572.33
sequence load elapsed time 10.84
hard parse elapsed time 8.28 0.03

ORACLE
REAL-WORLD PERFORMANCE

How to Spot This in AWR Report

4,070.52
3,640.17
2,179.45
742.84
581.84
312.81
287.22
224.89
195.68
187.06

131,437
54,187
73,025
54,193
24,892
49,410
12,451

108,256
425789
1,036,606

SQL ordered by CPU Time

Resources reported for PL/SQL code includes the resources used by all SQL statements called by the co
%Total - CPU Time as a percentage of Total DB CPU

%CPU - CPU Time as a percentage of Elapsed Time

%I0 - User I/O Time as a percentage of Elapsed Time

Captured SQL account for 39.1% of Total CPU Time (s): 28,214
Captured PL/SQL account for 13.5% of Total CPU Time (s): 28,214

(CPU Time (5) | Executions | CPU per Exec (s) | “Total | Elapsed Tme (s)| %CPU| %i0| —SaLld

003 1443 4,287.48
007 12.90 3,759.08
003 7.72 2,287.88
001 263 748.79
002 206 601.68

1.11 353.63
002 1.02 308.63

0.80
0.69
0.66

256.17
250.85
35582

Do not sum up to 100%, while we
are cpu bound

94.94
96.84
95.26
99.21
96.70

2.96 d2grhp1kjtbxq
1.94 3jp1f1had5wxt
2.53 fogerhvva8nyh
0.00 dytzdjh1sdgr1
2.97 ddzqgjy884hg5f

| 88.46

0.00evfhbrhh6syu3

93.06

6.58 7Tdbwvdjb4af8m

87.79
78.00
92.57

0.00)578aa1kxbhufu
u.un|b33v2q3dnbzﬁ1
D.DDI1truvzzﬁhim55

st

with claim_line_procedure_grou...
BEGIN pri_pprc_selection_pkg.c...

with claim_line_procedure_grou...

insert into pri$pprc_sel_proci...

insert into pri$pprc_selectio...

select t1.owner, t1.name, t1.q...

insert into pri$pprc_selectio...

select coch.” from rcl_combina...
SELECT * FROM (SELECT a.*, ROW...
SELECT ID, DYN_CHAR_001, DYN_C...

ORACLE
REAL-WORLD PERFORMANCE

)
(Vp]
o _.
L =
v @©
n v
v T
O
° ¢
O o
> n
| G
.
> +—
LLl
ISI
| -
()
>
| -
()}
(Vp]
C
O
o)
(0]
i

e MR

This Overhead Also on Appl

.- JavaCalls: :call_helper

JavaThread: :thread_main_inner

; éETask'I’I’lread. :run

ORACLE’
REAL-WORLD PERFORMANCE

Full Story Here

* Youtube video: https://www.youtube.com/watch?v=8jiJDflpw4Y

“"Koppelaars database”

Status sofar,
* Process architectures have per call overheads:
1. OSinterrupt figuring out which process to start (sys)
2. Scheduler doing its work (sys)
3. On-chip microcode execution to re-instantiate process state (sys)

4. Entering Oracle code (user)

ORACLE
REAL-WORLD PERFORMANCE

https://www.youtube.com/watch?v=8jiJDflpw4Y

Database Performance Core Principles

Oracle instance = Process based architecture:

Foreground process is serving your database calls

To perform efficiently:
1. process needs to get on CPU as quickly as possible

Process needs to stay on CPU as long as possible:

2. process shouldn't go to sleep voluntarily a lot
3. process should experience as few involuntary sleeps as possible

ORACLE’

REAL-WORLD PERFORMANCE

3: Stay on CPU, minimal Number of Involuntary Sleeps

Too many processes

DB call DB call DB call

Oracle Oracle Oracle
Foreground Foreground Foreground
Process Process Process

Three processes all want OS scheduler A

toinsert 10 rows de-schedules processes while they
(array-based or stored procedure) still have more CPU work to do =
involuntary context switch

(sleep)

Better to have one
process insert 30 rows

J

ORACLE
REAL-WORLD PERFORMANCE

Impact of Too Many Processes

16000 ,//"
14000
/ — 1 Proc/Core
12000 / ----- 10 Proc/Core Avg
10000 — e |
TX/s /_____ 50 Proc/Core Avg
8000 7=
’f
6000 72
,/
 A—_—_————eeer T T L L L L L L L L N T N N T T e
4000 25 e
2000
(@) T T | | T T T
4 8 12 16 20 24 28
of CPUs
ORACLE

REAL-WORLD PERFORMANCE

Database Performance Core Principles

Database Performance Core Principles
* Implications of Oracle’s Process Based Architecture
* User Response Time, Throughput and DB Time

ORACLE’
REAL-WORLD PERFORMANCE

User Response Time

* Actual duration is measure of performance quality (shorter = better)
» Consistency of response time is an equally important measure of performance quality

* Variance in response times will not delight your users

ORACLE
REAL-WORLD PERFORMANCE

3 3 r ¥ 4 B o
= . . > Y/ f &7 = .
! L) e o P B VS -

Response Time Experienced by User

10

9
Frequency X 1,000 8 /\

Single distinct spike with majority Multi-hump indicating response
: times with high variance —GOOD
of user experiences e
)
4
3
2) Long tail]
(o)
o 1 2 3 4 5 6 7 8 9 10

Response time sec
Short tail ORACLE E

REAL-WORLD PERFORMANCE

_ . AN T A f)?y &, A//"’”‘/"'&yﬁ«* o -

Throughput

* Throughput is the number of units of work processed within a period of time
* Throughputis not response time

* Asthe system gets busier, throughput increases (good), but the response time for each individual
unit of work will also increase (bad)

R=S/(1-U)
* If you've witnessed throughput X at 40% busy,)
I o 20
don’t expect throughput 2*X at 80% busy g
= 15
§10
% 5
0
0 20 40 60 80 100
% in-Use (Busy-rate)

Response Time Versus DB Time

Application Database
Server Server

Vs .

End User

A\ 4

|e Total User Response Time

|

L Will be significant if
DBTime = not both in cloud

Remember

* Responsetime

* Throughput

e DBTime

Three different things

| Total User Response Time

} I I S .

’(—f\ otal User Response Tim arm—e— .
wtal User Response Ti N \ I

} \\ -\gtal User Response TING \\ s

\ \al User Response Ti \

|
} ' \\ NUsar Response T T\ \

} i i Til User Response Tlﬁ \I

Response Time Core Principle

10

Frequency X
1,000,000

9

8

How to
ensure this

— Good
— Bad
Instead of this
2 3 4 5 6 7 8 9 10

Response Time sec

User Experience Response Time: Breakdown

Network Application Network Database

Vs

End User

le Total User Response Time >\
\ B B E BE BFE B =B

Time Line

ORACLE’
REAL-WORLD PERFORMANCE

User Experience Response Time: Breakdown

Network Application Network

Component Duration |Call count |Total time
. Http server dl 2 2*d1

JIVM d2 6 6*d2
_. Foreground d3 5 5*d3

Network outbound d4 2 2*d4
End User Network DC ds 10 10*d5

le Total:
L -

le

Database

‘\ Total User Response Time

Time Line

ORACLE’

REAL-WORLD PERFORMANCE

A\

3 3 & 5 V 7 o
= . . > Y/ f &7 = .
! L) e o P B VS -

User Experience Response Time: Variance

Again: %-Busy and Call Counts matter

Breakdown of response time: 18
16
Component Duration |Call count |Total time 14
Http server di 2 2*d1

VM d2 6 6*d2 v 12
Foreground d3 5 5*d3 £ 10

Network outbound d4 2 2*d4 lT_u
Network DC ds 10 10*d5 5 8
Total: 6
i
. . 2

[Linear relation?
0
0 20 40 60 80 100 120

Call Count

ORACLE
REAL-WORLD PERFORMANCE

Ensuring Single Spike

How to prevent multi-hump response times

[With increasing%]

More calls & more queueing

Actual relation!

Breakdown of response time: 18
Component Duration Call Count Total Time
Al x1 cl x1*cl

A2 X2 c2 x2 * c2 ——
A3 x3 c3 x3 *c3 £ 10
Ad x4 c4 x4 * c4 = "

A5 X5 c5 x5 * ¢5 o
Total: 6
4

n

2

Z C Smaller = More consistent,
: single spike, response times

20 40 60 80 100 120

Call Count
ORACLE
REAL-WORLD PERFORMANCE

DB Performance Core Principles: Summary

The Oracle database is a process based architectureg

You want to stay well clear of
To perform efficiently each process requires:

CPU’s being 100% busy

1. togetonCPU asap, and stay on CPU /f DY
2. tonotgo to sleep voluntarily a lot Better to call database
L with more work than to

3. toexperience as few involuntary sleeps as possible call with little work

J

Use architecture that requires small
number of processes

Consistent response times require minimization of call counts across components (processes)

ORACLE
REAL-WORLD PERFORMANCE

So, If We See These...

ORACLE’
REAL-WORLD PERFORMANCE

High Call Counts per Second

Fo

Load Profile

Instance Activity Stats

» Ordered by statistic name

SQL*Net roundtrips to/from client

|

290,410,469

High number of voluntary
sleeps per second

23,473.70

DB Time(s): 30.5
DB CPU(s): 9.2
Background CPU(s): 1.2
Redo size (bytes): 16,944 ,137.9
ad (blocks): 332,564.8
nges: 88,414.9
pad (blocks): 1,059.0
Jrite (blocks): 3,247 .4
bquests: 1,032.0
D¢ bquests: 1,872.5
12.10 \vB): 8.3
Write 1O (MB): 254
IM scan rows: 0.0
Session Logical Read IM: 0.0
Global Cache blocks received: 2,960.8
Global Cache blocks served: 2,771.9
[User calls: 50,490.2 |
Parses (SQL): 16,556.7
Hard parses (SQL): 37.8
SQL Work Area (MB): 26.2
Logons: 0.7
Executes (SQL): 21,400.0
Rollbacks: 294
Transactions: 1,939.9
ORACLE E
REAL-WORLD PERFORMANCE

3 3 & 5 V 7 o
= . . > Y/ f &7 = .
! L) e o P B VS -

Little Work per Call (Row-by-Row Processing)

SQL ordered by Executions

Not wanting to stay on
CPU long

* %CPU - CPU Time as a percentage of Elapsed Time
* %I0O - User I/O Time as a percentage of Elapsed Time
» Total Executions: 264,754,563

» Captured SQL account for 51.3% of Total

Elapsod Time (s) | %CPU SQLid | Sl Modulo |

4 428,782 4 416,496 1.00 7,839.34 12.9 42v88dga8b6ym JDBC Thin Client SELEC”
3,984,410 3,984,402 1.00 5,939.65 17.3 Vi fq1j38zxwk35x JDBC Thin Client UPDATL
3,644,892 3,644,799 1.00 2,063.83 30.2 254 ajzh9q11a8waS JDBC Thin Client INSERT
3,600,643 3,600,300 1.00 1,823.46 20.2 0 8k9s18v6c6g22 JDBC Thin Client SELEC”
3,410,561 3,410,467 1.00 1,718.03 28.6 9 Opyjdmfrzmtég JDBC Thin Client INSERT
3,154,501 3,154,312 1.00 913.85 36.8 2.2 c8dasrd4jjddSr JDBC Thin Client SELEC”
3,140,508 3,140,114 1.00 494 44 379 0 430vvx7gptét3 JDBC Thin Client SELEC”
3,116,220 3,115,952 1.00 564.03 27 .1 40.3 7phddk8yyS5zk0 JDBC Thin Client SELEC”
3,077,007 3,077,004 1.00 3,076.86 16.8 4 8yf3smfz8ubk5 JDBC Thin Client UPDATHI
2,929,431 2,929,430 1.00 2,009.00 232 1 3yyhwéssbgsjl JDBC Thin Client UPDAT!
2,929,413 2,929,401 1.00 3,124.07 19 3 2f6fcbhhg478n JDBC Thin Client UPDATI
2,800,813 2,800,512 1.00 1,099.73 20 1 fsawc6c853385 JDBC Thin Client SELEC
ORACLE E
REAL-WORLD PERFORMANCE

High Process-to-Core Ratio + Busy System

I LS T T - N

rac1.mycompany.aws Linux x86 64-bit 20 OS Scheduler
Snapld | SnapTme

Begin Snap: 209 17-Apr-18 10:00:32 2112

End Snap: 213 17-Apr-18 13:26:44 2131

doing what it does
best:
de-scheduling

YOO XXX XX XXX Linux x86 64-bit 44
_ Snapld | SnapTime

Begin Snap: 93142 28-Aug-18 00:00:24 6218

End Snap: 93143 28-Aug-18 00:15:27 6233

ORACLE
REAL-WORLD PERFORMANCE

_ I ‘f-‘L ‘\, “V.‘ .-\ “ 2 = ,; f” \'" ,#V// & 4 ﬂ[lé /.VVA .":.'A_p—.'»‘r. - — // 4.".‘ 4):"_' ‘Im R

We Pretty Much Know That

Despite lots of CPU being used, not much work is getting done
—> Majority of CPU time is spent on per-call overhead across all layers

With high busy rates on database and application servers

—> Response times probably aren’t consistent

ORACLE’
REAL-WORLD PERFORMANCE

’ —av PP - . —
_ . \ A\ S "u/,"‘/ b L = i A5 L O™

Last Topic...

What happened last two decades with application development?
e [t fundamentally moved away from these principles

* We stopped using database as a processing engine

ORACLE
REAL-WORLD PERFORMANCE

High Level Breakdown of OLTP Application

Logic

r B
User Software
Interfaces Interfaces
\/)
Business

Conceptually 3 tiers

* Exposed functionality
- GUI's for human interaction
- REST, or otherwise, for software interaction

Internals
* Business logic
* Data store, relational database

ORACLE’

REAL-WORLD PERFORMANCE

Two Fundamentally Different Architectures

4 R
User Software User Software
Interfaces | Interfaces Interfaces | Interfaces
< J
Business
SQL Logic
saL sQL SQLSQL

DBMS = Persistence Layer DBMS = Processing Engine

"NoPIsqgl" Approach "SmartDB" Approach

ORACLE’
REAL-WORLD PERFORMANCE

You'll Always See:

Row-by-Row, Single Table Approach

begin

“if-then-else-loop” code

select o.LIMIT into 1 _limit

;J Single-row data access]

PL/SQL here for convenience

from ORDERS o
where o.ORDER# = 1_order#;

1 high risk := (1_limit > 2000);

:! Business logic]

Primitive data access
(single table, row-by-row)

if 1 _high_risk
then

for r in (select * from ORDERLINES ol where ol.ORDER#
loop
if r.STATUS =
then

if r.discount > 10 then 1_discount :=

update ORDERLINES ol set o0l.DISCOUNT =
where ol.ORDERLINE# = r.orderline#;

"OPEN'

1 discount

end if;

end loop;

end if;

end;

r.discount - 10; else 1 _discount

1_order#) % Row fetching (data access)]

:| Business logic]
% Row-by-row updating (data access)]

:= @; end if;

ORACLE

REAL-WORLD PERFORMANCE

You'll Never See This: Set-Based SQL

update ORDERLINES ol set ol.DISCOUNT = greatest(ol.DISCOUNT - 10, 9)
where ol.ORDER# = 1 order#
and ol.STATUS = 'OPEN’
and exists(select 'high-risk!’
from ORDERS o
where o.ORDER# = 1 order# and o.LIMIT > 2000)

PN

Decrease the discount percentage on all (still open) order lines, References >1 table
of a given high-risk order. Affects >1 row
Why not?

Because persistence frameworks
aren’t capable of generating this

ORACLE
REAL-WORLD PERFORMANCE

High call counts
between processes

SQlYor SP-call

ORACLE’

REAL-WORLD PERFORMANCE

- 5 & 5 y 7 =

Two Fundamentally Different Architectures

Database as Bit Bucket Database as Processing Engine
Aka #NoPlsql Aka #SmartDB
All business logic outside database All business logic inside database
“Layered Software Architectures” Only Ul outside database
* Many small calls to database leading to high * One user experience = one database call,
rate of voluntary sleeps reducing voluntary sleeps
* Noticeable per-call overhead, as call is single * Negligible per-call overhead, as call involves
row statement substantial amount of work
* Requires large number of FG-processes risking * Requires small number of FG-processes, reducing
high rate of involuntary sleeps involuntary sleeps

Youtube: “asktom H ﬂ
connection pool —

ORACLE
REAL-WORLD PERFORMANCE

Implication For Your Computing Resources Footprint

Every SQL statement submitted from application server

* Requires OS entry

. . Ten database calls
* Requires CPU context switch entries and exits

* Requires Oracle kernel entry Oracle
Foreground :J‘ Scheduled 10 times

Process

Before it arrives at SQL-engine
10 Context Switches

—

Sum of these fixed CPU overheads is very real
for row-by-row SQL!

* Could be 2X CPU knock-on to SQL execution

10 Oracle code entries

*i and exits
J

ORACLE
REAL-WORLD PERFORMANCE

{':} - Thread context switch

Implication ForYour Footprint: Affects Application Server too

Network Application Network Database

*

End User

Not just on database server: on application server as well

ORACLE’
REAL-WORLD PERFORMANCE

Micro Services Architecture: Rife With Context Switches

Audit Event Datatiase s Check Balance

Network

More components = risk
of more variability

End User e

|| EE = E = E = B @ E U EE ¥ B U BN F N W BN U BN W BN @ B @ ||

ORACLE’
REAL-WORLD PERFORMANCE

Time Line: breakdown consists of many more components

Implication of Moving Business Logic Out of DBMS

Introduce ridiculous inefficient use of available CPU resources

We see database cores spending up to 60% of CPU-cycles
on OS and CPU context-switches and getting in/out database kernel

And application servers spending majority of time descending
and ascending up JDBC and framework layers

Only way to improve this =» move away from row-by-row processing
This requires hand-written set-based SQL

ORACLE
REAL-WORLD PERFORMANCE

\ 1 L Y T o . Wy eyrsy §FFs

Want to Get an Idea of Inefficiency on Your Server?

Operating System Statistics - Det | High Sys-to-User ratio is]
good indicator

16-Aug 14:00:27 104.09
16-Aug 15:00:07 167.55 49.27| 3242 16.85 950.73 0.00

Statistic per Second
SQL*Net roundtrips to/from client 96,798,185 27,038.44

You're not using DBMS as it
was designed to be used

ORACLE
REAL-WORLD PERFORMANCE

How to Reduce Your Computing Resources Footprint?

f User SoftwareN User Software
Interfaces | Interfaces Interfaces | Interfaces
V:: ~
Business
sQL Logic
saL saL SQLSQL

DBMS = Persistence Layer DBMS = Processing Engine

More busy Less busy

ORACLE’
REAL-WORLD PERFORMANCE

T TP TT 7 v el R
_ | T8 = o P BISLE S S >

Here Is The, Counter Intuitive, Core Fact

The #SmartDB gains of:

* Massive reduction in call counts, greatly diminishes all aforementioned
overheads per call

* Outweigh additional work you bring into database by implementing
your business logicinside SQL and PL/SQL

ORACLE
REAL-WORLD PERFORMANCE

In Summary

* Majority of current applications have large computing resources footprints

* Why? Because they were built using layered software architectures and have all business logic
execute on application servers

* These architectures cause very high call counts across components (processes), and thereby they
violate all database core performance principles

ORACLE
REAL-WORLD PERFORMANCE

In Summary

* If you want to reduce your computing resources footprint
=» Don't bring data to code, bring code to data, use smart SQL

* Focus on minimizing chattiness, process context switches, call-counts, etc.
* You'll reduce both your database-server footprint, as well as your application-server footprints

* And your user experiences will be consistent

Questions: email Toon.Koppelaars@oracle.com, twitter: @toonkoppelaars

ORACLE’
REAL-WORLD PERFORMANCE

mailto:Toon.Koppelaars@oracle.com

