
Consulting Member of Technical Staff

Real-World Performance

Server Technologies

Toon Koppelaars

Database Performance Core Principles

Part of Oracle eco-system since 1987

• Have done and seen quite a lot of application development

• Database design, SQL and PL/SQL

Big fan of “Using Database As a Processing Engine”

• Not just as a layer to persist data

Member of Oracle’s Real-World Performance Group

About Me

My Dilemma…

• That what you are about to hear, is probably not going to be of much help to you

• Why?

• Because you are stuck with applications that can’t be changed

• Those applications could run faster *and* use less computing resources, yet would require re-
architecting

• I can only create awareness of this

• My hope is that you can use this talk’s knowledge to influence architectural decisions of future
applications

• If I have a single CPU how many processes can be active at any one time?

• And if I have four CPU’s?

• What’s the implication if there are more processes wanting to run than there are CPU’s?

• If my process needs to access an external resource (network, I/O) what happens to it?

• Once request has finished, what decides when my process gets back onto CPU and how much is
it allocated?

• What is the difference between user and sys CPU?

Performance Core Principles: Why?

Database Performance Core Principles

• Implications of Oracle’s Process Based Architecture

• End User Response Time, Throughput, and DB Time

What happened last two decades with application development?

• It fundamentally moved away from these principles

Agenda

Oracle instance = Process based architecture:

Foreground process is serving your database calls

To perform efficiently:

1. process needs to get on CPU as quickly as possible

Process needs to stay on CPU as long as possible:

2. process shouldn’t go to sleep voluntarily a lot

3. process should experience as few involuntary sleeps as possible

Database Performance Core Principles

1: Get On CPU

Oracle
Foreground

Process

Idle CPU

Idle/sleeping

1: Get On CPU

Idle/sleeping

Idle

OS receives interrupt:
figures out which process to

wake-up
Scheduler needs to get this

process on CPU

CPU

Oracle
Foreground

Process

Application issues
database call

All work performed by
OS and scheduler is
reported as SYS cpu

• Only one process can be on a core at a time
(it’s either 1 or 0)

• How quickly you can get on core depends
on current utilization

• Higher busy rate  higher chance of
spending time on run-queue before getting
scheduled

• Less straightforward with multiple cores

1: Get On CPU

CPU Utilization Chance of getting scheduled
immediately

50% 1 in 2

66% 1 in 3

75% 1 in 4

80% 1 in 5

90% 1 in 10

• Not only does it take longer to get on CPU, moreover:

• Busy rate has measurable impact on DB-call response time

• Which becomes noticeable when CPU has 60-65+% busy rate

• This is in essence basic queueing theory, nothing new…

Impact of CPU Utilization on Database Call Response Time

Database Call Response Time, Single Core

R = S / (1 – U) Random arrival

Response time
Service time
Utilization%

R – S = queue-time
while resource is
servicing others

This is an
exponential curve

Every system starts queueing at some point, impacting response times

This depends upon:

• Arrival rate, service times, number of cores, and busy rate

More Complex With Multiple Cores

Response time

Arrival rate

Service
times

Number of
cores

CPU busy-rate

On busy system,
significant portion of
this is queuing-time

You never want database server to
be running at full capacity all the

time:
stay well clear of 100% busy

2: Stay on CPU, not Go to Sleep Voluntarily a Lot

Ten database calls One database call

Completed 10 calls
10 Voluntary sleeps
Scheduled 10 times

10 CPU Thread
Context Switches

(more SYS cpu)

CPU CPU

Oracle
Foreground

Process

Oracle
Foreground

Process

Insert 10 rows
 row-by-row

Array-based or stored proc

6

On 3 GHz core
this is 0.33 ms

This is about 3 µs

This is where Oracle
code spends most of

its time

Fetch by rowid
takes 6-10 µs

2: Stay on CPU, not Go to Sleep Voluntarily a Lot

Oracle
Foreground

Process

Oracle
Foreground

Process

Ten database calls One database call

Scheduled 10 times

10 Context Switches

10 Oracle kernel entries
and exits

10 Operating system
entries and exits

CPU CPU

Oracle Kernel Entry and Exit

• Like a thread context switch, this too is measurable overhead
If your calls are small and fast

Oracle Kernel Entry and Exit

• We measured this in a lab environment

• In summary:

• Simple batch process

• Built in Java

• Single threaded

• Mix of single row selects, single row inserts and single row deletes

• All issued (sequentially) over JDBC to database

• Generating 9000 calls per second

• Using “perf”, we profiled foreground process to see where CPU time is spent

Visualizing CPU Usage With Flamegraph

• Perf samples n times per second, the call-stack of your process’ execution thread

• Flamegraph visualizes this

Oracle Kernel Entry and Exit

Here, third of
USER cpu is per-

call overhead

How to Spot This in AWR Report

DB CPU >>
sql execute elapsed time

10,000 seconds of USER cpu
spent on entry/exit

How to Spot This in AWR Report

Do not sum up to 100%, while we
are cpu bound

This Overhead Also on Application Servers!
Every process has

this overhead!

Full Story Here

• Youtube video: https://www.youtube.com/watch?v=8jiJDflpw4Y

“Koppelaars database”

Status sofar,

• Process architectures have per call overheads:

1. OS interrupt figuring out which process to start (sys)

2. Scheduler doing its work (sys)

3. On-chip microcode execution to re-instantiate process state (sys)

4. Entering Oracle code (user)

https://www.youtube.com/watch?v=8jiJDflpw4Y

Oracle instance = Process based architecture:

Foreground process is serving your database calls

To perform efficiently:

1. process needs to get on CPU as quickly as possible

Process needs to stay on CPU as long as possible:

2. process shouldn’t go to sleep voluntarily a lot

3. process should experience as few involuntary sleeps as possible

Database Performance Core Principles

3: Stay on CPU, minimal Number of Involuntary Sleeps

Too many processes

OS scheduler
de-schedules processes while they

still have more CPU work to do =
involuntary context switch

(sleep)CPU

Oracle
Foreground

Process

Oracle
Foreground

Process

Oracle
Foreground

Process

DB call DB callDB call

Three processes all want
to insert 10 rows

(array-based or stored procedure)

Better to have one
process insert 30 rows

Impact of Too Many Processes

0

2000

4000

6000

8000

10000

12000

14000

16000

4 8 12 16 20 24 28

1 Proc/Core

10 Proc/Core Avg

50 Proc/Core Avg

of CPUs

TX/s

Database Performance Core Principles

• Implications of Oracle’s Process Based Architecture

• User Response Time, Throughput and DB Time

Database Performance Core Principles

• Actual duration is measure of performance quality (shorter = better)

• Consistency of response time is an equally important measure of performance quality

• Variance in response times will not delight your users

User Response Time

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

Response Time Experienced by User

Frequency X 1,000

Response time sec

Multi-hump indicating response
times with high variance

Long tail

Short tail

Single distinct spike with majority
of user experiences

• Throughput is the number of units of work processed within a period of time

• Throughput is not response time

• As the system gets busier, throughput increases (good), but the response time for each individual
unit of work will also increase (bad)

• If you’ve witnessed throughput X at 40% busy,
don’t expect throughput 2*X at 80% busy

Throughput

Response Time Versus DB Time

Network Network Database
Server

Application
Server

End User

Total User Response Time

DB Time
Will be significant if

not both in cloud

• Response time

• Throughput

• DB Time

Three different things

Remember

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

Response Time Core Principle

Frequency X
1,000,000

Response Time sec

How to
ensure this

Instead of this

Good

Bad

Network Network DatabaseApplication

End User

Total User Response Time

Time Line

Query

Query

Insert

Delete

Delete

User Experience Response Time: Breakdown

Network Network Database

User Experience Response Time: Breakdown

Application

End User

Total User Response Time

Time Line

Query

Query

Insert

Delete

Delete

Again: %-Busy and Call Counts matter

User Experience Response Time: Variance

Breakdown of response time:

Linear relation?

How to prevent multi-hump response times

Ensuring Single Spike

Breakdown of response time:

Actual relation!
More calls more queueing

With increasing variance

Smaller = More consistent,
single spike, response times

The Oracle database is a process based architecture

To perform efficiently each process requires:

1. to get on CPU asap, and stay on CPU

2. to not go to sleep voluntarily a lot

3. to experience as few involuntary sleeps as possible

Consistent response times require minimization of call counts across components (processes)

DB Performance Core Principles: Summary

You want to stay well clear of
CPU’s being 100% busy

Use architecture that requires small
number of processes

Better to call database
with more work than to

call with little work

So, If We See These…

High number of voluntary
sleeps per second

High Call Counts per Second

Little Work per Call (Row-by-Row Processing)

Not wanting to stay on
CPU long

High Process-to-Core Ratio + Busy System

OS Scheduler
doing what it does

best:
de-scheduling

Despite lots of CPU being used, not much work is getting done

Majority of CPU time is spent on per-call overhead across all layers

With high busy rates on database and application servers

 Response times probably aren’t consistent

We Pretty Much Know That

Last Topic…

• We stopped using database as a processing engine

Conceptually 3 tiers

• Exposed functionality

- GUI's for human interaction

- REST, or otherwise, for software interaction

Internals

• Business logic

• Data store, relational database

High Level Breakdown of OLTP Application

User
Interfaces

Software
Interfaces

Business
Logic

Table
Data Store

Two Fundamentally Different Architectures

DBMS = Persistence Layer

"NoPlsql" Approach

DBMS = Processing Engine

"SmartDB" Approach

You’ll Always See: Row-by-Row, Single Table Approach

Single-row data access

Business logic

Row fetching (data access)

Business logic

Row-by-row updating (data access)

“if-then-else-loop” code
PL/SQL here for convenience

Primitive data access
(single table, row-by-row)

You’ll Never See This: Set-Based SQL

Decrease the discount percentage on all (still open) order lines,
of a given high-risk order.

Why not?
Because persistence frameworks
aren’t capable of generating this

References >1 table
Affects >1 row

“Chatty” Applications When Business Logic Outside DB

“Decrease discount
percentages for high-risk

order”

SQL engine

UI

SQL SQL SQL SQL SQL

High call counts
between processes

SQL SQL

One set-based update,
referencing multiple

tables

SQL engine

UI

SQL or SP-call

Two Fundamentally Different Architectures

Aka #SmartDB

All business logic inside database

Only UI outside database

• One user experience = one database call,
reducing voluntary sleeps

• Negligible per-call overhead, as call involves
substantial amount of work

• Requires small number of FG-processes, reducing
involuntary sleeps

Database as Processing Engine

Aka #NoPlsql

All business logic outside database

“Layered Software Architectures”

• Many small calls to database leading to high
rate of voluntary sleeps

• Noticeable per-call overhead, as call is single
row statement

• Requires large number of FG-processes risking
high rate of involuntary sleeps

Database as Bit Bucket

Youtube: “asktom
connection pool”

Every SQL statement submitted from application server

• Requires OS entry

• Requires OS scheduling

• Requires CPU context switch

• Requires Oracle kernel entry

Before it arrives at SQL-engine

Sum of these fixed CPU overheads is very real
for row-by-row SQL!

• Could be 2X CPU knock-on to SQL execution

Implication For Your Computing Resources Footprint

Network Network Database

Implication For Your Footprint: Affects Application Server too

Application

End User

Not just on database server: on application server as well

Query

Query

Insert

Delete

Delete

: Thread context switch

Micro Services Architecture: Rife With Context Switches

End User

Check BalanceAudit Event

Time Line: breakdown consists of many more components

v v

More components  risk
of more variability

Introduce ridiculous inefficient use of available CPU resources

Only way to improve this move away from row-by-row processing

This requires hand-written set-based SQL

Implication of Moving Business Logic Out of DBMS

We see database cores spending up to 60% of CPU-cycles
on OS and CPU context-switches and getting in/out database kernel

And application servers spending majority of time descending
and ascending up JDBC and framework layers

Want to Get an Idea of Inefficiency on Your Server?

High Sys-to-User ratio is
good indicator

You’re not using DBMS as it
was designed to be used

How to Reduce Your Computing Resources Footprint?

DBMS = Persistence Layer

More busy

DBMS = Processing Engine

Less busy

The #SmartDB gains of:

• Massive reduction in call counts, greatly diminishes all aforementioned
overheads per call

• Outweigh additional work you bring into database by implementing
your business logic inside SQL and PL/SQL

Here Is The, Counter Intuitive, Core Fact

• Majority of current applications have large computing resources footprints

• Why? Because they were built using layered software architectures and have all business logic
execute on application servers

• These architectures cause very high call counts across components (processes), and thereby they
violate all database core performance principles

In Summary

• If you want to reduce your computing resources footprint
Don’t bring data to code, bring code to data, use smart SQL

• Focus on minimizing chattiness, process context switches, call-counts, etc.

• You’ll reduce both your database-server footprint, as well as your application-server footprints

• And your user experiences will be consistent

• Questions: email Toon.Koppelaars@oracle.com, twitter: @toonkoppelaars

In Summary

mailto:Toon.Koppelaars@oracle.com

